Signaling by eNOS through a superoxide-dependent p42/44 mitogen-activated protein kinase pathway.
نویسندگان
چکیده
Expression of endothelial nitric oxide synthase (eNOS) in transfected U-937 cells upregulates phorbol 12-myristate 13-acetate (PMA)-induced tumor necrosis factor-alpha (TNF-alpha) production through a superoxide (O(2)(-))-dependent mechanism. Because mitogen-activated protein kinases (MAPK) have been shown to participate in both reactive oxygen species signaling and TNF-alpha regulation, their possible role in eNOS-derived O(2)(-) signal transduction was examined. A redox-cycling agent, phenazine methosulfate, was found to both upregulate TNF-alpha (5.8 +/- 1.0 fold; P = 0.01) and increase the phosphorylation state of p42/44 MAPK (3.1 +/- 0.2 fold; P = 0.01) in PMA-differentiated U-937 cells. Although S-nitroso-N-acetylpenicillamine, a nitric oxide (NO) donor, also increased TNF-alpha production, NO exposure led to phosphorylation of p38 MAPK, not p42/44 MAPK. Upregulation of TNF-alpha production by eNOS transfection was associated with increases in activated p42/44 MAPK (P = 0.001), whereas levels of phosphorylated p38 MAPK were unaffected. Furthermore, cotransfection with Cu/Zn superoxide dismutase, which blocks TNF-alpha upregulation by eNOS, also abolished the effects on p42/44 MAPK. Expression of Gln(361)eNOS, a mutant that produces O(2)(-) but not NO, still resulted in p42/44 MAPK phosphorylation. In contrast, two NADPH binding site deletion mutants of eNOS that lack oxidase activity had no effect on p42/44 MAPK. Finally, PD-98059, a p42/44 MAPK pathway inhibitor, blocked TNF-alpha upregulation by eNOS (P = 0.02). Thus O(2)(-) produced by eNOS increases TNF-alpha production via a mechanism that involves p42/44 MAPK activation.
منابع مشابه
Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملHIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells
Chess, Patricia R., Michael A. O’Reilly, Fredrick Sachs, and Jacob N. Finkelstein. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99: 1226–1232, 2005. First published May 12, 2005; doi:10.1152/japplphysiol.01105.2004.— Mechanical strain is necessary for normal lung growth and development. In...
متن کاملParallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells.
IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinas...
متن کاملPGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation.
Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase an...
متن کاملIndependent regulation of cyclo-oxygenase 2 expression by p42/44 mitogen-activated protein kinases and Ca2+/calmodulin-dependent kinase.
5-Hydroxytryptamine (5-HT, 'serotonin') is a potent inducer of the early response gene cyclo-oxygenase 2 (Cox-2; prostaglandin G/H synthase) in mesangial cells. Protein kinase C (PKC), Ca2+-dependent enzymes and mitogen-activated protein kinase (p42/44 MAPK) have previously been shown to be essential modules of the signalling pathway leading from the pertussis-insensitive 5-HT2A receptor to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001